RENEWABLE DIESEL PROJECT

Nohemi Zerbie, DOE Office of Transportation & K. Shaine Tyson, NREL

NBC Strategic Partnerships Workshop

April 11-12, 2001

Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle • Bechtel

Program Goals

All projects meet one or more of the following:

Reduce the cost of renewable diesel Expand the supply Reduce barriers to expanded use

Budget Status

FY 1997 - 2001 Annual Budget = \$750,000 FY 2002 + ?

Renewable Diesel Fuels

Biodiesel

Program R&D focus since 1977

Fischer Tropsch Fuels

Evaluation of wax producing facilities with satellite cracking facilities

DME (di methyl ether)

evaluation of propane blending and/or replacement potential

Ethanol-diesel blends

technical support to other programs

Other (pyrolysis oils, DMM, DEE, alcohols....)

technical evaluation

Biodiesel Project

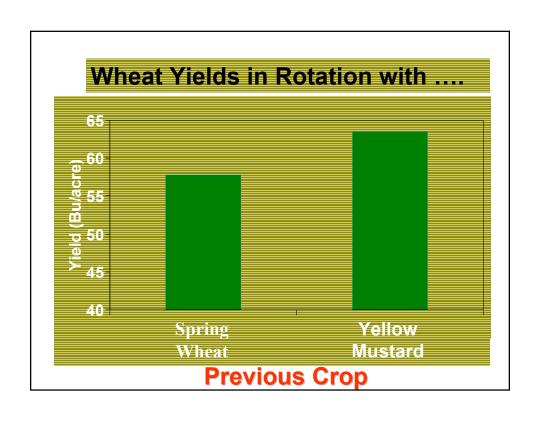
Priority focus

Feedstock expansion and feedstock cost minimization Goals

6-10 billion gallons of oil at 10 cents/lb
Expanding markets for meal worth 15 cents/lb or more

All other projects

Improve technology and reduce production costs
Reduce market barriers
Expand outreach


Biodiesel Production Costs

Capacity mil gal/yr	Feeds tock type	Feedstock ¢/lb	FFA %	Total Cost Biodies el \$/gal <u>+</u> 0.10
10	Soy	25	<1	2.36
10	Soy	17	<1	1.66
10	Yellow grease	10	<10	1.12
10	Trap grease	<5	>50	0.76
10	Mustard	10	<2	1.05

Batch processing, wet salty glycerin @ 15 ¢/lb, full capacity costs, ROR=15%

Brassica Crops

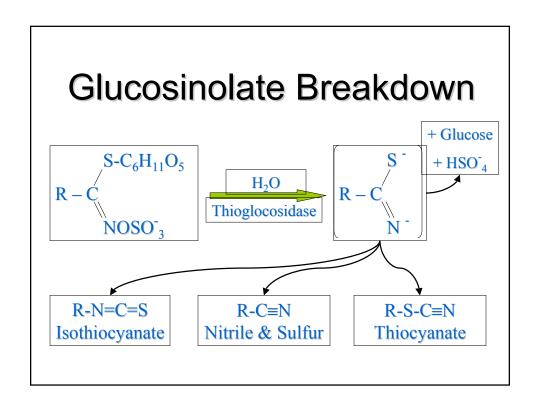
- Meal has Allelopathic compounds
- Broad-leaf crop with high biomass
- Large tap root
- Low production costs, low inputs
- Good yields in dry land farming conditions
- Yields optimization untapped potential
- > Seed oils 25% to 40%
- Oils have good biodiesel qualities
- Excellent rotational benefits
- Planted and harvested with wheat equipment

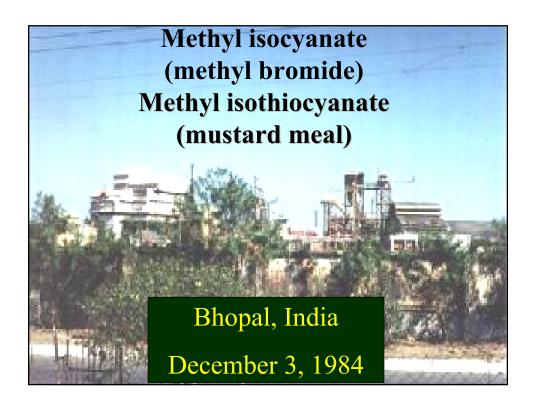
Glucosinolates in Brassica

Species	Roots	Leaves	Seed meal	
	μmol/g			
B. napus	5.3	8.6	99.4	
B. rapa	4.6	7.4	93.0	
B. juncea	10.2	18.1	216.4	
S. alba	12.3	15.3	244.1	

Why Organic Pesticides

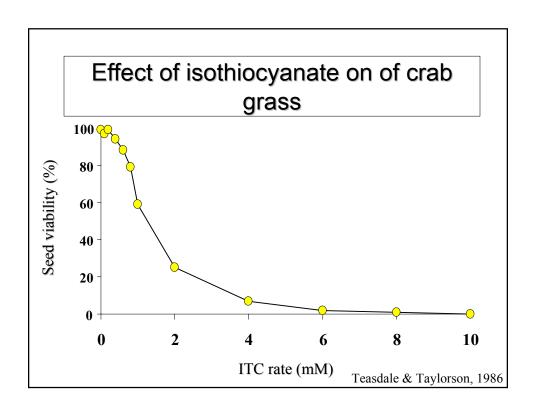
- > Sustainable
- > Internationally competitive
- > Environmentally friendly
- > Fewer commercial chemicals available
- > High value market
- > Expanding markets worldwide

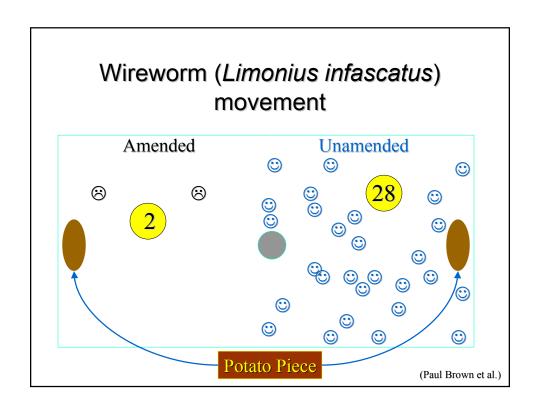

Glucosinolates in Brassica

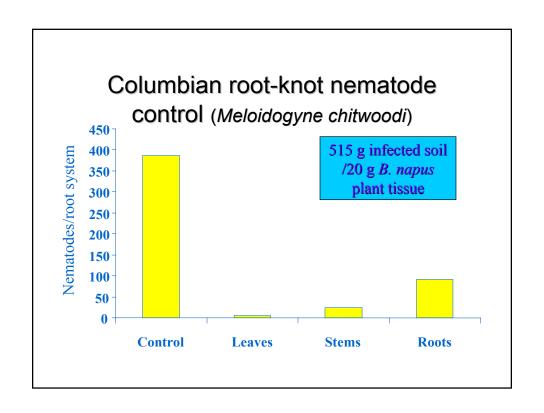

- Isopropyl
- Allyl
- 3-butenyl
- 4-pentenyl
- 2-OH-3-butenyl
- 3-OH-4-pentenyl
- OH benzyl
- phenylethyl
- 3 methylindolyl
- 4-OH-3 methylindolyl

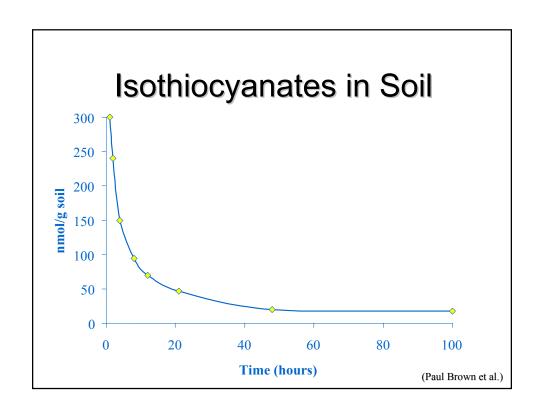
Allyls have fungicide value Butenyls have herbicide value Pentenyls have insecticide value

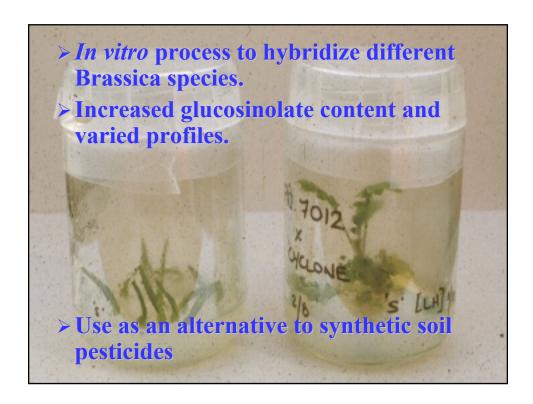
Little is known about other 200 glucosinolates

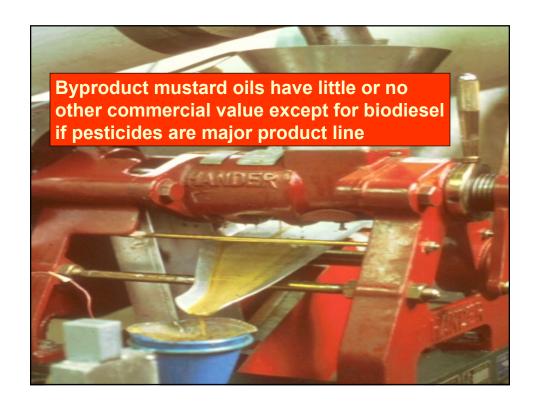

Some glucosinolates have been shown to be potent anit-carcinogenic compounds in laboratory animals.

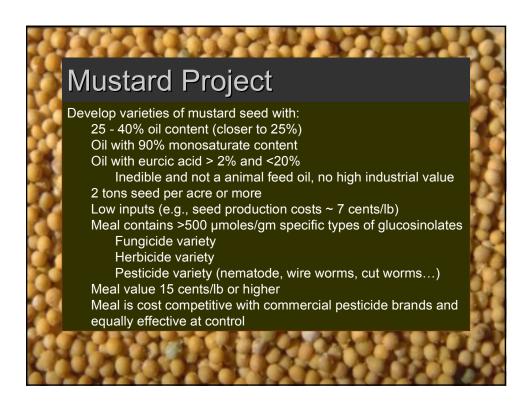


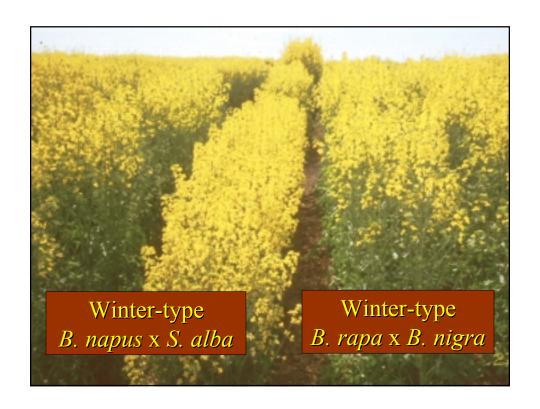

- •Many US crops require chemical soil fumigation
- •Fumigation costs in excess of \$3500 per acre
- •EPA made methyl bromide illegal in 2000
- No commercially viable substitutes widespread


Methyl Bromide Soil Fumigation






What do we have so far?

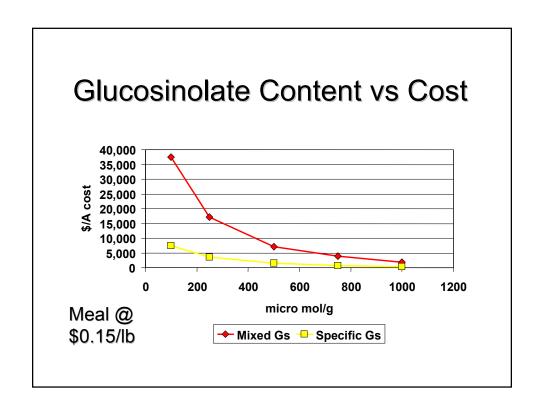

- Glucosinolates concentrate in the meal
- Glucosinolate breakdown products kill agricultural pests
- Different Brassica species produce different glucosinolates
- Byproducts from specific glucosinolates have unique impacts on specific agricultural pests

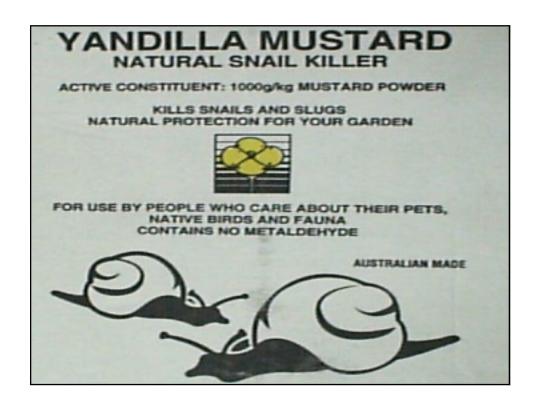
Fatty Acid Profiles

Species	Fatty Acid Profile						
Species	16:0	18:0	18:1	18:2	18:3	20:1	22:1
Canola	4.7	1.9	65.4	19.3	7.3	1.1	0.0
Rapeseed	2.5	0.7	11.4	10.6	9.1	5.4	55.7
H. mustard 1	4.1	3.1	40.3	7.8	1.7	6.4	25.5
H. mustard 2	2.5	2.4	56.3	5.5	2.2	4.5	20.7

Seed Meal Glucosinolate Content

Species	Total Gluc's	% Humus
B. napus 'Humus'	99.4	100.0
B. nigra x B. rapa	516.1	519.2
S. alba x B. napus	451.0	453.7


Glucosinolate Profile


Glucosinolate	B. napus	B. nigrax	S. albax
Type	Humus	B. rapa	B. napus
Allyl	0.0	205.0	0.0
3-butenyl	13.2	197.8	0.0
4-pentenyl	43.7	48.7	1.8
2-OH-3-butenyl	30.5	61.6	19.6
OH-benzyl	0.0	0.0	290.6
Phenylethyl	5.3	1,4	1.8
3-indolyimethyl	6.6	Trace	120.9
4OH3-indoylmethyl	Trace	1,4	16.1

Drive Down Application Rates

	Seed	25.0
Species	meal	g/m^2
	μmol/g	- ton/acre -
B. napus	99.4	124.7
B. juncea	216.4	57.3
S. alba	244.1	57.3
B. rapa x B. nigra	516.1	24.0
S. alba x B. napus	451.0	27.5

Assume 19% of glucsinolate goes to isothiocyanate.

Isothiocyanate Extraction

Out-Year Mustard R&D

• 2001

Multi-state hybrid trials in PNW with 60 varieties Agronomics, rotation benefits, input variation Glucosinolate optimization, fatty acid optimization Market analysis Registration analysis

2002

pesticide demonstration trials with industrial partners pesticide registration R&D Kansas and Georgia regional breeding trials breeding work continues for optimization

Reduce Biodiesel Costs

- Biodiesel Technology Analysis
 - Soy and yellow grease feedstocks
 - 3, 10, 30 mil gal/yr scales
 - baseline info on technology and costs
- Waste Grease Composition and Pretreatment
 - 45 samples analyzed, FFA range from 40% to 100%
 - Other impurities minor, good conversion potential
- Trap Grease to Biodiesel Feasibility and Demonstration
 - Demonstrate 99% conversion of 60-90% FFA feedstocks to ASTM quality biodiesel at reasonable cost
 - Consortium of regulators, sewage treatment plants, biodiesel producer, and trap grease collectors.

Barriers Projects

- NOx Project
 - Identify root cause of higher NOx emissions
 - · polyunsaturated fatty acids
 - Identify specific pathways of NOx in combustion chemistry
 - 1 degree timing advance due to different fuel compression characteristics
 - · Other factors underway
 - Identify additives that prevent NOx increase in biodiesel
 - 1% DTBP makes B20 NOx neutral with petro diesel
 - · other additives being tested

Barriers Projects

- Urban Air Quality Model Data
 - B20 and B100 data for Mobile 5/6, OTAG, CARB models
 - SIP analysis of B20 options (PM, CO, Ozone)
- Oxidative Stability Test Methods
 - Recommended 3 test methods for further development
 - Refine test methods for B20 and B100
 - conduct round robin
 - ASTM inclusion
- Life Cycle Analysis of Grease and Fat Biodiesel
 - Partnership with Fats and Protein Research Foundation

New Markets R&D

- Heating Oil Technology Assessment
 - Evaluate the technical parameters for biodiesel blends with heating oil in residential and commercial boilers
 - Partners: NYSERDA, NBB, Griffin Industries, Brookhaven
- Warwick School Dist. Demonstration
 - Evaluate 3 biodiesel heating oil blends (10%, 15%, 20%) in three public school buildings boilers over 12 months
 - Partners: Global Companies, Brennan Oil, Rhode Island Energy Office, Warwick School District, Advanced Fuel Solutions, World Energy
- Locomotive Emissions from B20
 - raw data completed, report expected this year
 - Partners: CSX railroad, CARB, AAR

Outreach and Education

- Production Accreditation
 - Develop 4 college level classes on biodiesel
 - Introduction to Biodiesel
 - Biodiesel Analytical Methods
 - Biodiesel Technology
 - Biodiesel Business Management
- Petroleum Infrastructure
 - Outreach with petroleum distribution industry (PMAA, ...)
 - Analysis of integration costs
 - Heating oil industry outreach
- Annual R&D Mtg (Feb, 2001)
- 5-6 Regional Workshops (late FY 2001)